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A B S T R A C T

Recent evidence suggests that observers can grasp patterns of feature variations in the environment with sur-
prising efficiency. During visual search tasks where all distractors are randomly drawn from a certain dis-
tribution rather than all being homogeneous, observers are capable of learning highly complex statistical
properties of distractor sets. After only a few trials (learning phase), the statistical properties of distributions -
mean, variance and crucially, shape - can be learned, and these representations affect search during a subsequent
test phase (Chetverikov, Campana, & Kristjánsson, 2016). To assess the limits of such distribution learning, we
varied the information available to observers about the underlying distractor distributions by manipulating set
size during the learning phase in two experiments. We found that robust distribution learning only occurred for
large set sizes. We also used set size to assess whether the learning of distribution properties makes search more
efficient. The results reveal how a certain minimum of information is required for learning to occur, thereby
delineating the boundary conditions of learning of statistical variation in the environment. However, the benefits
of distribution learning for search efficiency remain unclear.

How do observers represent the variation in the environment such
as the colors in a moss-covered lava field or the brightness distribution
in snow covered landscapes? Although we may think of moss as “green”
and snow as “white”, we clearly perceive more than a single feature
value. On the other hand, encoding every feature at every location
along with their conjunctions will require a lot of resources. The
question is then how feature variation in the external world is trans-
lated into a representation, and the answer will likely be somewhere
between the two extremes outlined above. Processing of such hetero-
geneous perceptual ensembles has been studied with texture segrega-
tion tasks (Julesz, 1981) but natural sets are typically not as regular as
those studied by Julesz. Take color – color variation in natural en-
vironments is rarely uniform – and neither are the oriented edges
available in natural statistical distributions. There is accumulating
evidence that human observers can extract summary statistics such as
the mean and standard deviation of a number of features, such as color,
size, orientation and brightness, from stimulus sets having a certain
variability (Alvarez, 2011; Ariely, 2001; Corbett &Melcher, 2014;
Haberman &Whitney, 2012; Michael, de Gardelle, & Summerfield,
2014; Rosenholtz, Huang, Raj, Balas, & Ilie, 2012; Utochkin, 2015).

Summary statistics provide a concise way of representing feature var-
iation but they are still relatively coarse because two different en-
sembles might have the same statistics while coming from different
distributions.

Our recent experiments have revealed that observers can represent
more intricate feature variation than studies of simple statistical para-
meters have suggested. Chetverikov, Campana, and Kristjánsson
(2017b) showed that after only a few trials observers can learn the
properties of feature distributions of colored distractors in an odd-one-
out visual search task over and above the mean and standard devia-
tions, and in Chetverikov, Campana, and Kristjánsson (2016, 2017a),
we found similar results for orientation. In those studies, assessed ob-
servers’ representations by measuring their implicit expectations of
upcoming stimulus distributions with response times (RTs) instead of
explicit judgements of distribution properties. Namely, we measured
effects of 'role-reversals' between targets and distractors on visual
search performance (Kristjánsson & Driver, 2008). A role-reversal oc-
curs when a target on a preceding trial becomes a distractor on the next
trial, or vice-versa, which typically slows search (Becker, 2010). This
effect is not limited to specific feature domains and seems to reflect
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encoding of distractors in implicit short-term visual working memory
(Carlisle & Kristjánsson, 2017; Lamy, Antebi, Aviani, & Carmel, 2008;
Maljkovic & Nakayama, 1994). In a typical role-reversal study, the
distractors are homogeneous. For example, in a color search observers
would look for a red target among green distractors. After a few trials
with repeated distractor colors observers encode the distractor features,
and when the targets become green (among distractors of some other
color), search is slowed. The key difference in our manipulation relative
to previous studies was that distractors were heterogeneous and on a
single trial their features were randomly drawn from a specific prob-
ability distribution. The distractors, in other words, formed a perceptual
ensemble. Continuing with the example above, instead of a red target
among green distractors, observers had to search for a red target among
distractors of varying degrees of “greenness”, akin to searching for a red
berry within moss patches. Then, as these conditions were repeated for
a few trials, a role-reversal to a greenish target resulted in slowed
search. Importantly, the degree of slowing depended on the corre-
spondence between target hue and the probability of that particular hue
among previous distractors. This allowed us to assess observers’ re-
presentations of ensembles encoded on previous search trials.

We assumed, in other words, that if a target falls within observers’
representations of preceding distractor distributions it would cause
role-reversal effects, that is, search would be slower because the fea-
tures of the odd-one-out target would clash with representations of
distractor distributions from previous trials (Chetverikov et al., 2016,
2017a,b). Using targets corresponding to different parts of previously
learned distractor distributions allows us to infer the probabilistic re-
presentation of that distribution by assessing how much search is
slowed. For example, following several odd-one-out search trials in the
orientation domain with distractors drawn from a truncated Gaussian
distribution with an orientation µ= 45° and σ=15° (range restricted
to 45 ± 30°), observers respond more slowly when a 45° odd-one-out
target suddenly appears than when a 40° target appears, which, in turn,
will yield longer response times than a 35° target, and search will be
fastest for targets that fall outside the range of the previous distractor
distribution. The search RTs will therefore be slow if observers expected
this orientation to be from the distractor distribution of immediately
preceding trials. The degree of slowing reflects encoded feature prob-
ability. By repeating blocks of learning and test trials with different test
targets, we were able to “probe” observers’ representations of feature
distributions along the whole range of possible feature values and ob-
tain detailed continuous estimates of these representations.

Importantly, we also found that even when two distributions have
the same range or variance, observers’ representations differ
(Chetverikov et al., 2016). So in contrast to a Gaussian distribution,
following learning of a uniform distribution with the same 45° mean
and±30° range, response times (RTs) for any target within 45 ± 30°
degrees will be approximately the same. That is, even the shapes of the
distributions (e.g., whether they are Gaussian, uniform, skewed or even
bimodal) are encoded (Chetverikov et al., 2016, 2017a). Differences in
the estimates for differently shaped distributions suggest that the pre-
cision of ensemble perception is much higher than was thought before.

1. Mechanisms of ensemble perception

How do observers obtain such precise ensemble representations
from the stimuli presented on the screen? Recent studies involving
explicit summary statistic judgements indicate that the aggregation is
limited by the number of stimulus subsets rather than the number of
stimuli within a subset (Attarha, Moore, & Vecera, 2014; Im &Halberda,
2013; Maule & Franklin, 2015; Utochkin & Tiurina, 2014;
Utochkin & Yurevich, 2016). But the exact mechanisms of aggregation
within subsets remain controversial. Several studies support the idea of
limited sampling (Maule & Franklin, 2016; Myczek & Simons, 2008;
Solomon, May, & Tyler, 2016; Tibber et al., 2015) with the number of
sampled stimuli being below four. That is, observers can respond

accurately when asked about summary statistics even if they analyse
only a few exemplars from the stimulus set. Others have argued against
this, however (Attarha &Moore, 2015; Attarha et al., 2014; Dakin,
2001; Im&Halberda, 2013; Tokita, Ueda, & Ishiguchi, 2016;
Utochkin & Tiurina, 2014). Moreover, approximations involved in ex-
plicit averaging may differ from tasks where the use of statistics is not
explicitly required but might nevertheless be useful or even necessary.
Such tasks may include visual search (Rosenholtz et al., 2012), visual
categorization (Utochkin, 2015), attentional selection (Im,
Park, & Chong, 2015), or texture perception (Dakin, 2015). In parti-
cular, distribution learning in visual search (Chetverikov et al. (2016) is
not required by the task and therefore allows the study of mechanisms
involved in incidental use of summary statistics.

The use of explicit judgments about the properties of feature dis-
tributions in previous studies limits our understanding of the mechan-
isms leading to ensemble representations. It is possible that potential
bottlenecks on the precision of such explicit judgments have little to do
with distribution representations per se. There are a number of ways in
which even if observers have highly precise representations of dis-
tributions, explicit judgments will still rely on only a few samples. For
example, observers might use their representation to generate a limited
sample for explicit judgements. That is, when asked to judge the mean,
observers might simply sample the distributions they saw. Another
option is that, during an averaging task, observers’ might try to hold in
working memory only the stimuli useful for the averaging they are
asked to perform. Using tasks with incidental encoding would be
helpful to understand whether limitations found in some studies for
explicit averaging are related to ensemble encoding or simply reflect
the use of explicit judgements.

Regardless of the mechanisms underlying explicit averaging, in-
cidental distribution encoding within the present paradigm is of interest
by itself. Previous results indicate that distribution representations that
observers use in visual search are more precise than, for example, those
that can be derived from forced-choice judgements (see review in
Chetverikov et al., 2016). How this higher precision is obtained is an
interesting question in and of itself, one we investigate here.

Our previous results indicate that distribution learning in visual
search can occur rapidly (Chetverikov et al., 2017a). Sometimes only
two trials seem to be needed to learn simpler distributions, while
learning a more complex (bimodal) distribution required a larger
number of search trials and involved a gradual change from a unimodal
to a bimodal representation. This shows that distribution representa-
tions can be based on the accumulation of information coming from
multiple samples – otherwise the representation would be the same
regardless of trial number. But how many samples are needed from a
single display is unknown. For example, on a given trial observers may
sample three or four items (Maule & Franklin, 2016; Myczek & Simons,
2008; Solomon et al., 2016) and then integrate the samples from dif-
ferent trials.

Here we used set size manipulations to investigate the limits on
processing of simultaneously presented information during feature
distribution learning. If learning of distribution parameters is based on
a few stimuli sampled from each trial, the learning should be equally
efficient with small and large set sizes. On the other hand, if the
learning is based on an aggregation (possibly, in parallel) of a large
number of stimuli, larger set sizes would result in better learning.

2. Role of set size for search efficiency and inter-trial priming

Set size manipulations have played a key role in theories of visual
attention. For easier searches where the target is easily found among
distractors, RTs are constant with set size, or can even decrease
(Bravo &Nakayama, 1992; Kristjánsson, 2015; Wang,
Kristjánsson, & Nakayama, 2005; Wolfe & Horowitz, 2017). Using this
classic manipulation may therefore also reveal whether and how dis-
tractor distribution learning affects search performance more generally.
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Representing distractor distributions accurately may help observers
make more optimal perceptual decisions, making search easier (Ma,
Shen, Dziugaite, & van den Berg, 2015). Additionally, we expected that
more precise estimates of distribution density would be more beneficial
for Gaussian than uniform distributions. Chetverikov et al. (2016)
found that even with the same range (or standard deviation) of dis-
tractor orientations, representations of uniform distributions are nar-
rower for Gaussian than uniform ones. If this is true, search should be
particularly easy within Gaussian compared to uniform distractor dis-
tributions when observers’ estimates of distribution shape reflect the
difference between these distributions.

We also assessed traditional target and distractor priming effects
with different set sizes. Meeter and Olivers (2006) have argued that
priming is weaker when there is less ambiguity in displays. Accord-
ingly, they found that priming was strongest with fewer elements in the
display. Rangelov, Müller, and Zehetleitner (2017), Rangelov,
Zehetleitner, Muller, and Zehetleitner (2013) found that priming of
pop-out is stronger with smaller set sizes that were also less dense. In
other studies, however, priming effects were either the same or stronger
with larger than smaller set sizes, however (Becker & Ansorge, 2013;
Hodsoll, Humphreys, & Braithwaite, 2006; Kristjánsson & Driver, 2008;
Wang et al., 2005; Wolfe, Butcher, Lee, & Hyle, 2003) or strong despite
large set sizes (e.g., Ásgeirsson & Kristjánsson, 2011). Our aim was to
see if set-size induced changes in priming of pop-out would mirror those
observed for distribution learning. A positive answer to that question
would suggest that the two effects might be governed by similar me-
chanisms. Interestingly, priming of pop-out in the orientation domain
has been argued to mostly depend on distractors, not the target (Lamy,
Yashar, & Ruderman, 2013). Given that we reliably found distribution
learning in the orientation domain, it is then possible that distractor
distribution learning is independent of target learning. However, this
conclusion depends on the assumption that with the larger set sizes
used in previous studies, target priming is absent as it was in Lamy et al.
(2013).

3. Aims and hypotheses

We therefore had three aims, firstly to assess how much information
is needed for encoding of perceptual ensembles by manipulating set
size. For example is a certain minimum amount of information (or set
size) required so that observers treat a display as a distribution in the
first place? We assessed the precision of distribution learning by ana-
lyzing RTs as a function of the difference in orientation between the
target and the mean of distractor distributions from preceding trials. In
the absence of any learning, there would be no dependency between
search times and target difference with distractors on previous trials;
that is, RT curves would be flat. With relatively precise learning, RT
curves would correspond to the probability density function (PDF) of
previously learned distributions. Intermediate learning precision should
result in non-flat RT curves that will be similar between distributions.
We expected that if distribution learning is driven by sampling only a
few items on each trial, learning should be equally precise with small
and large set sizes. In contrast, if distribution learning is based on ag-
gregating information from the whole display, then precision of dis-
tribution learning should increase with set size.

Secondly, we used set size to assess how distribution learning affects
search efficiency. To this end, we analyzed whether evidence for dis-
tribution learning coincides with improved search efficiency. As de-
scribed above, we expected in particular that RT differences between
uniform and Gaussian distributions will increase for larger set sizes.
Finally, we measured whether priming effects and distribution learning
vary similarly with set size, which could indicate that the two reflect
overlapping mechanisms. This was done by comparing priming effects
from target or distractor set mean with distribution learning for dif-
ferent set sizes.

4. Experiment 1

4.1. Method

4.1.1. Participants
Eleven observers (seven female, age M=26.36) participated in the

experiment. All of them were staff or students at St. Petersburg State
University, who participated without additional reward. The study was
approved by the local ethics committee and carried out in accordance
with the Declaration of Helsinki. The observers signed an informed
consent form before participating.

4.1.2. Procedure
We used a task similar to our previous studies (Chetverikov et al.,

2016, 2017a). Observers looked for an odd-one-out line among a set of
lines differing in orientation. Stimuli were presented on an iiyama
ProLite T2250MTS display (21.5″ with 1680×1050 resolution) using
PsychoPy 1.82.01 (Peirce, 2007, 2009). Each line length was 1.41°.
Observers indicated whether the target line was in the upper or the
lower half of the screen by pressing the ‘i’ or ‘j’ keys on a standard
keyboard. Trials were organized in intertwined prime and test ‘streaks’.
During prime streaks, distractors were randomly drawn from a uniform
(range=60 deg.) or a truncated Gaussian distribution (SD=15 deg.,
range=60 deg.). The distribution mean was the same within streak but
chosen randomly between streaks. Both distributions had the same
range on each trial, ensured by adding two distractors with orientation
equal to the minimal and maximal values given the mean and range.
Target orientation was selected randomly on each trial with the re-
striction that the distance between target orientation and distractor
mean in feature space was 60 degrees at minimum. Within test streaks,
distractor orientations were randomly drawn from a truncated Gaussian
with SD=10 deg. and range 20 deg. Each test trial had the same target
orientation within a streak, while distractor mean was chosen randomly
with a distance to target no less than 60 deg (as on prime trials).

The main difference from our previous experiments (Chetverikov
et al., 2016, 2017a) was that set size during prime streaks (prime SS)
varied between streaks (was constant within them). Four set sizes were
used: 8, 14, 24, or 36 lines. The two smaller set sizes were fit into a 4 by
4 matrix, while the larger ones were fit into a 6 by 6 matrix, both with
3.2° cell size (Fig. 1). Line position within cells was jittered randomly
by± 0.5° on both coordinates. On test streaks, set size (test SS) was
always 36. The mean distance between lines was constant.

Observers participated in three sessions of approximately 1040
trials. Each session had 208 prime and test streaks (4 set sizes * 2 prime
distribution types * 26 repetitions). The first session was discarded, as
participants had difficulties searching within the smallest set size: mean
RT was very high (M=994ms), some of the participants had ex-
ceptionally high mean RTs (e.g., for one of them M=1727ms), while
others had exceptionally low accuracy (M=0.62 for one participant,
M=0.65 for another).

4.1.3. Data analyses
RTs as a function of set size and distribution type were analyzed

using ANOVA or linear mixed effects regression (LMER; Bates, Mächler,
Bolker, &Walker, 2015) where appropriate. RTs were log-transformed,
errors were removed from RT analyses. Distribution learning was as-
sessed by fitting models first to the overall data and then to data from
individual observers (see Chetverikov et al., 2017b). The data from
Experiments 1 and 2 is available at https://osf.io/3eunr/?view_only=
f591c72e57b6417ea1b0d2aa02f411b2.

5. Results

5.1. Set size effects on prime trials

Fig. 2 shows that search for targets within the uniform distractor
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distribution was more difficult than within a Gaussian distribution with
SD=15. A repeated-measures ANOVA revealed main effects of set size
(F(3, 30)= 34.79, p < .001, η2G= 0.16 for RT, F(3, 30)= 27.95,
p < .001, η2G= 0.24 for accuracy) and distribution type (F(1,
10)= 24.66, p < .001, η2G= 0.02 for RT, F(1, 10)= 29.93, p < .001,
η2G= 0.07 for accuracy), but no interaction. Note that ANOVAs ignore
the fact that set size is a numeric variable. Analyses treating set size as

numeric with LMER demonstrated a significant interaction for RT (t
(13418)=−2.72, p= .006). Post-hoc comparisons showed that search
was faster within a Gaussian distribution compared to a uniform dis-
tribution for all set size levels except for the smallest one (B=−0.01
(0.01), p= .470, for the rest of the comparisons p < .01). Consecutive
comparisons (comparing set size 14 with 8, 24 with 14, and 36 with 24)
separately for each distribution type showed that increasing set size
decreased response time (p < .001) except for the comparison of set
size 14 with 24 (p > .9).

5.2. Set size effects on test trials

Fig. 3 shows that set size during prime streaks affected search per-
formance on test trials (RT increased, F(3, 30)= 2.51, p= .113,
η2G= 0.00, and accuracy decreased, F(3, 30)= 3.29, p= .046,
η2G= 0.04), but previous distribution type had no effect on test trial
performance (p > .12). Post-hoc contrasts indicated that RTs were
longer (t(30)= 2.70, p= .031) and accuracy was lower (t
(30)=−2.73, p= .029) following the largest set size compared to the
smallest one. No other contrasts were significant.

5.3. Priming of pop-out

We next analyzed priming effects (Kristjánsson & Campana, 2010)
by the difference (in absolute degrees) between target orientations and
between distractor mean orientations. We first analyzed priming for
switches from prime to test streaks, because during switches between
streaks both target and distractors changed, providing an opportunity
to independently analyze their effects. The effects were analyzed with
LMER by entering both target-to-target and distractor-mean-to-dis-
tractor-mean differences simultaneously into the regression model (the
random effects for these variables grouped by participant were also
added, controlling for between-subject variability). Fig. 4 shows the
resulting regression coefficients showing the amount of slowing per

Fig. 2. Effects of set size on RT’s during prime streaks for the different distribution types.

Fig. 1. Example stimuli with different set sizes, 8–36 lines from upper
left to lower right.
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change of 1 degree in either target or distractor orientations. LMER
indicated that with small SS neither the differences in target orientation
between prime and test trials, nor differences in distractor means, had
any effect (t < 0.51 with SS=8 and t < 1.5 with SS=14, Fig. 4,
right panel). In contrast, with SS=24 there was significant distractor
priming (t=3.4) but not target priming (t=1.7), while for the largest
SS both were present (t=2.0 and t=4.9 for distractor and target
priming, respectively). Analyses of interactions further confirmed that
target priming became more pronounced with increasing SS (t=2.7) of
preceding prime streak while distractor priming also increased but not
quite significantly (t=1.9).

We then did the reverse test, by analyzing RTs on the first trials

during prime streaks as a function of the differences in targets and
distractors with preceding test streaks (Fig. 4, left panel). The effect of
distractor-mean-to-distractor-mean difference was significant for all
tests while the effect of target orientation shift was not significant with
the smallest SS (t=−0.2), close to significance with SS=14 (t=1.9)
and significant for larger SS (t > 2). Analyses of interactions showed
that priming from target increased with prime streak SS (t=2.4) while
distractor priming decreased (t=−2.1).

Finally, analyses of target differences within prime streaks (where
the target varied between trials, but distractor mean stayed the same)
showed that target priming increased with SS (B=0.0007, 0.0008,
0.0009, 0.0010 with t=1.3, 1.7, 2.1, and 2.6 for set sizes 8, 14, 24, and
36, respectively). Analyses of priming effects within test streaks were
not run because test streak had constant SS.

5.4. Distribution learning

Fig.5 shows non-linear smoothed curves for RT as a function of the
distance between targets on test trials and the means of preceding
prime trial distractor distributions (CT-PD, current target – previous
distractor), that, in other words, reflect role-reversals between targets
and distractors (Kristjánsson & Driver, 2008; Becker, 2010). The dis-
tance was analyzed in absolute degrees as prime distributions were
symmetric.

To test whether observers learned distractor distributions (that is:
responded according to the learned probabilities) we fit the RT data

from test trials using models based on actual distractor distributions
(half-Gaussian, uniform, uniform with decrease) against simple linear
and null models (see more formal description of the models in
Chetverikov et al., 2017b. The null model assumed constant RT. The
linear model assumes simple linear dependency of RT on CT-PD. The
half-Gaussian model assumed that RTs are described by a half-Gaussian
function with SD=15. The uniform model assumed constant RT both
within and outside the range of 30 degrees, but with different baselines
for the two ranges. Finally, the uniform-with-decrease model assumed
constant RT within a 30 degree range and linearly decreasing RTs
outside this range. Fit quality was assessed with Bayesian Information
Criteria (BIC). We further denote the comparisons between BIC models
as ΔBIC, with ΔBICNULL showing the difference from the null model.
ΔBIC > 2 provide “positive” evidence, while ΔBIC > 6 provide
“strong” and ΔBIC > 10 “very strong” evidence (Kass & Raftery, 1995).

For the combined data from all participants, the null model

Fig. 3. Search performance on test trials as a function of prime streak set size and dis-
tribution type.

Fig. 4. Estimates of target and distractor priming effects in Experiment 1 on prime (left) and test (right) trials. Only the first trials after switch were analyzed, that is, for prime streaks the
first trials after the switch from test streaks and vice versa. Vertical lines show 95% CI. If the effect is above zero (dashed line), the decrease in target-to-target similarity (target priming)
or distractor-mean-to-distractor-mean similarity (distractor priming) slowed down the search.

1 For the sake of brevity we do not report regression coefficients here; they are shown
in Fig. 4.
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provided the best fit following the two smallest set sizes independently
of the distribution used (Table 1).

For the set size of 24, the uniform model was better than the null
following a Gaussian distribution (ΔBICNULL=4.12), while following
the uniform distribution, the linear model was better than the null
(ΔBICNULL=2.20), although close to the uniform with decrease model

(ΔBIC=0.76). Note that the non-linear estimates of the RT function
were quite similar with that set size (Fig. 5).

Only with the largest set size did a half-Gaussian model provide a
good fit (Table 1; see also Fig. S1) that was significantly better than the
null model (ΔBICNULL=18.44), although close to the linear model
(ΔBIC=1.43). In contrast, but also in line with predictions, following a
uniform distribution with the largest set size the best fit was provided
by the uniform with decrease model (ΔBICNULL=17.53), that was also
better than the linear model (ΔBIC=2.67).

To show that these results are not an artefact of aggregation, we
analyzed slopes obtained for each observer with a simple two-segment
model with a breaking point at the range of the prime distribution
(± 30 deg.). If distributions are learned, RTs should mimic the shape of
distribution PDF (i.e., Gaussian or uniform) with negative RT slopes
within the range of Gaussian prime distribution and flat slopes within
the range of the uniform prime distribution. The critical interaction
between prime distribution type and slope type was significant only for
prime SS=36, F(1, 10)= 6.05, p= .034, η2G= 0.12 (Fig. 6).

6. Discussion

Experiment 1 shows that a large set size (36 lines) is necessary for
distribution learning. Only then did we observe the expected difference
in the shapes of RT functions on test trials: following Gaussian prime
streaks, RT were best fit by half-Gaussian and linear models while

Fig. 5. Search times as function of the distance between target orientation on test streaks and the mean of preceding prime streak distractor distribution, separately for each prime SS.

Table 1
Model fits.

Prime SS ΔBIC against null model Best model Model 2nd best

Linear HG Uniform UwD ΔBIC

Prime Distribution: Gaussian, SD=15
8 −6.09 −3.12 −2.52 −6.69 Null Uniform 2.52
14 −3.73 −5.60 −6.03 −3.56 Null UwD 3.56
24 1.52 −1.82 4.12 1.50 Uniform** Linear 2.59
36 17.01 18.44 6.95 9.43 HG* Linear 1.43
Prime Distribution: Uniform
8 −4.37 −6.70 −4.96 −3.95 Null UwD 3.95
14 −5.92 −6.15 −5.38 −6.00 Null Uniform 5.38
24 2.20 −0.58 −2.08 1.44 Linear* UwD 0.76
36 14.86 2.33 9.69 17.53 UwD** Linear 2.67

Note: HG – half-Gaussian, UwD – uniform with decrease. ΔBIC > 2 provide “positive”
evidence, while ΔBIC > 6 provide “strong” and ΔBIC > 10 “very strong” evidence.

* Best model is better than the null model.
** Best model is better than the null and the 2nd best model.
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following a uniform distribution the uniform-with-decrease model
provided the best fit. For the second to largest set size (24 lines) some
learning was observed but the distribution shape was not preserved.
Following the two smallest set sizes, the null model provided the best fit
for both distributions, indicating no learning of prime distributions. In
fact, as Fig. 5 shows, RT functions were mostly flat, showing that RTs
were similar regardless of the distance between targets on test trials and
distractor mean on prime trials. This shows that the precision of dis-
tribution learning increases with set size, from no learning at all with
the smallest set sizes through some learning (that does not account for
distribution shape) with SS= 24 to accurate learning with SS=36.
Observers seemingly learn information about distribution properties by
aggregating information over the whole display rather than sampling
only a few display elements.

Our second aim was to assess the relationship between search effi-
ciency and distribution learning. To this end, we measured differences
in RTs and accuracy between uniform and Gaussian distributions as a
function of set size. We found that set size increased search efficiency.
However, distribution learning was only present for the large set sizes
(Table 1, Fig.5), but the difference in search efficiency between two
distribution types was already visible (and of similar magnitude) with
set sizes of 14 and 24 (Fig.2). We therefore cannot conclude that dis-
tribution learning improves search.

We also assessed effects of distribution learning on priming of pop-
out effects. Target priming became more pronounced with increasing
prime streak set size (where the target varied while distractor dis-
tribution was stable). Similar results were found for switches between
prime and test trials or between test and prime trials. Distractor priming
also increased with set size on preceding trials (in analyses of prime to
test switches) but decreased with increased set size of the current trial
(in analyses of test to prime switches). Note that in this experiment two
variables, set size and the difference in set sizes between trials are
confounded (this is addressed in Experiment 2, see below).
Nevertheless, the data show that both target and distractor priming
were present with larger set sizes (it was observed in analyses of test
trials only with the largest set size and in analyses of prime streaks only
for the two largest set sizes). For the smallest set sizes, we found no
priming effects. Overall, the results suggest that priming becomes
stronger with larger set size, except for decreasing distractor priming
with increased set size of the current trial. Our results therefore see-
mingly contradict earlier findings suggesting that with lower set sizes or
sparser displays, priming effects are more pronounced
(Meeter & Olivers, 2006; Rangelov, Müller, et al., 2013; Rangelov,
Zehetleitner, et al., 2017) or that only distractor priming is observed
within the orientation domain (Lamy et al., 2013), and support

previous studies showing similar or stronger priming with larger set
sizes (Becker & Ansorge, 2013; Hodsoll et al., 2006;
Kristjánsson & Driver, 2008; Wang et al., 2005; Wolfe et al., 2003). The
increase in the magnitude of priming effects with set size on preceding
trials mirrors increases of precision for distribution learning indicating
that the two may involve similar mechanisms.

Our design had some limitations. Firstly, set size varied on prime
trials while for test trials set size was always the largest (36). It is
possible that switches to larger set sizes decrease effects of previously
obtained knowledge. Second, large spacing between elements (“gaps”)
in stimulus matrices might lead to segmentation of stimuli into subsets
with separate statistics. Thirdly, observers may not have been able to
utilize distribution learning because the information was too scarce.
Low set sizes and only a few repetitions (3–4 trials on prime streaks)
result in an overall low number of distractors seen for each streak, and
this might not be sufficient for building a representation of distractor
distribution. More information could be provided by increasing trial
number during learning streaks – and in Experiment 2 we therefore
increased trial number during learning streaks.

7. Experiment 2

In Experiment 1 we found only learning of distractor distributions
for learning phases with large set sizes. A potential reason is that ob-
servers did not receive enough information - that the total number of
observed distractors (determined by set size and trial number within
prime streaks) was too low for distribution learning. Another possibility
is that there is something special about large set sizes, and sparser
displays may not contain the critical aspects that induce distribution
learning.

To investigate these issues, in Experiment 2 we used two set sizes
(16 and 36) both on test and prime trials and used stimulus matrices
without “gaps” in both cases. We also increased the number of repeti-
tions on prime trials to increase the amount of information available for
observers with lower set sizes. Finally, we increased the sample size to
add power to assessments of potential learning effects.

7.1. Method

7.1.1. Participants
Sixteen observers (ten female, age M=26.88) participated. All

were staff or students at St. Petersburg State University, participating
without additional reward. The study was approved by the local ethics
committee and carried out in accordance with the Declaration of
Helsinki. The observers signed informed consent before participating.

Fig. 6. Individual observers’ slopes within (β0) and outside (β1) of the prime distribution range in Experiment 1. Lines show 95% CI. Slopes are obtained for log-transformed RTs.
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7.1.2. Procedure
Experiment 2 followed the same procedure as Experiment 1 with the

following changes. First, only two set sizes were used (16 and 36) and
importantly both were used on both prime and test trials. Stimuli on
trials with 16 lines were fit into a 4× 4 matrix and 36 lines were fit into
a 6×6 matrix with the same spacing as in Experiment 1 (Fig. 7). The
prime trials in each block were now 5–6 trials per block (test streaks
still had 1 or 2 trials). Participants underwent two sessions with 1460
trials each (≈150 test trials for Prime SS×Test SS combination).

8. Results

8.1. Set size effects on prime trials

A repeated-measures ANOVA revealed main effects of distribution
type both for RT (F(1, 15)= 44.17, p < .001, η2G= 0.01) and accuracy
(F(1, 15)= 36.18, p < .001, η2G= 0.07). Interestingly, the main effect
for set size was significant only for accuracy (F(1, 15)= 71.77,
p < .001, η2G= 0.14) but not RT (F(1, 15)= 0.17, p= .682,
η2G < 0.01), which is explained by a significant interaction between the
two factors (F(1, 15)= 6.21, p= .025, η2G < 0.01; the interaction is
not significant for accuracy, F(1, 15)= 0.60, p= .451, η2G < 0.01). As
Fig. 8 (left panel) shows, increasing set size decreased RT for the
Gaussian but not the uniform distribution. This may reflect some ben-
efit from learning the distribution across trials during the prime streak
(see discussion).

8.2. Set size effects on test trials

A repeated-measures ANOVA using prime SS, prime distribution
type, and test SS showed that RTs depended on prime SS (F(1,
15)= 15.21, p= .001, η2G < 0.01) and test SS (F(1, 15)= 9.78,
p= .007, η2G < 0.01). No other factors nor interactions were sig-
nificant. Accuracy analyses showed significant effects of test SS (F(1,
15)= 20.51, p < .001, η2G= 0.06) interacting with prime SS (F(1,
15)= 5.50, p= .033, η2G= 0.03). Post-hoc tests indicated that partici-
pants were more accurate when switching from prime SS= 16 to test
SS=36 than when switching to test SS=16, M=0.93 [0.91, 0.94] vs.
M=0.96 [0.95, 0.97], t(15.0)=−4.32, p < .001. The test distribu-
tion following switches from prime SS= 36 did not affect accuracy
(M=0.93 [0.92, 0.95] vs. M=0.94 [0.92, 0.96], t(15.0)=−0.91,
p= .379).

8.3. Priming of pop-out

The analyses of priming effects were similar to Experiment 1. Fig. 9

(right panel) shows that on the first trials of test streaks, the magnitude
of priming from distractors and targets was similar (all effects sig-
nificant, t > 2, expect for distractor priming with a switch from
SS= 16 to SS= 36, which was borderline significant, t=1.9). On
prime trials (Fig. 9, left panel), target effects were generally weaker
than distractor effects and were significant only with a prime and test of
SS= 16. The difference was especially strong with a switch from test
SS= 36 (distractor effect t=6.0 and t=7.7 with a switch to SS=16
and 36, respectively; corresponding target effect t’s=1.3 and 0.4). The
only significant interaction, however, reflected the effect of the pre-
vious set size on a switch from test to prime streaks (t=2.6).2

Within prime streaks (where target varied, but distractors were
constant), target priming was present and similar in magnitude re-
gardless of SS (B=0.0010, t=4.2 and B=0.0009, t=3.6 for SS=16
and 36, respectively). Within test streaks (where distractors varied
while targets were constant), distractor priming was stronger with
larger SS (B=0.0018, t=3.8 vs. B=0.0008, t=1.5).

8.4. Distribution learning

As in Experiment 1, we fit half-Gaussian, uniform-with-decrease,
uniform, linear, and null models to the test streak RTs (Fig. 10) for each
combination of prime and test streak set sizes. Table 2 shows that, as in
Experiment 1 there was distribution learning following prime streaks of
SS= 36 but not SS=16. The uniform-with-decrease model provided
the best fit following the uniform distribution while the linear model
was best following the Gaussian distribution but only for prime SS=36
(see Fig. S2 for a depiction of model fits). For prime SS= 16, uniform-
with-decrease and linear models provided similar fits, and for the
Gaussian prime streak, neither of them was better than the null model
when the data from two test SS were analyzed separately.

We then compared individual observers’ slopes within and outside
the range of prime distractor distribution (mean±30 deg.) with re-
peated-measures ANOVA. Within the prime distribution, there was a
significant interaction between prime SS and prime distribution type (F
(1, 15)= 8.51, p= .011, η2G= 0.06). With prime SS= 36, slopes
within the prime distribution (β0) were flat following a uniform dis-
tribution and negative following the Gaussian distribution, in-
dependently of test SS (Fig. 11, right panel). In contrast, for the prime
SS= 16, they were similar regardless of prime distribution type
(Fig. 11, left panel). Analysing slopes outside the prime distribution
(β1), only the main effect of test SS was significant (F(1, 15)= 5.33,

Fig. 7. Example stimuli in Experiment 2 with set
sizes 16 (panel A; target is in the third row from
bottom, fourth column from the left) and 36
(panel B; target is in the bottom row, third
column).

2 The same results were obtained by computing individual regression coefficients for
target and distractor priming for each subject in each combination of conditions and then
analyzing them with a repeated-measures ANOVA.
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p= .036, η2G= 0.03). This reflects that with test SS= 16 (M=−0.001
(SD=0.002)) slopes were slightly more negative than with test
SS=36 (M=−0.001 (SD=0.002)). Finally, comparisons within
prime SS levels indicated that with prime SS=16 there were no sig-
nificant effects while with prime SS=36 there was a significant effect
of prime distribution type (F(1, 15)= 13.98, p= .002, η2G= 0.06) and
an interaction between prime distribution type and slope type (F(1,
15)= 5.59, p= .032, η2G= 0.05). Within the prime distribution range,
slopes were negative following Gaussian prime and flat following a
uniform prime distribution while outside the prime distribution they
were equally negative.

9. Discussion

Experiment 2 yielded two main results. First, distribution learning
requires large prime set size regardless of set size on test trials, even
when spacing between elements was matched. Distribution learning is

therefore unlikely to depend on sampling of a limited number of stimuli
as can be the case with explicit judgments of summary statistics
(Maule & Franklin, 2016; Myczek & Simons, 2008; Solomon et al., 2016;
Tibber et al., 2015). If that were the case, observers should be able to
sample the same amount of information and learn the distribution
shape with the smaller set sizes. In contrast, distribution learning is
likely to reflect parallel processing of a large number of presented sti-
muli.

Second, distribution learning seemingly affects visual search effi-
ciency. While search times were similar for uniform distributions re-
gardless of set size, for the Gaussian distributions larger set size resulted
in faster search suggesting that observers can use distribution shape to
guide their search. The Gaussian distribution we used is relatively
narrow and knowing that distractors belong to it may be useful for
outlier detection. The benefits of larger set sizes for a Gaussian dis-
tribution with SD=10 used on test trials were even larger (Fig. 8). This
comparison should be treated with caution, however, as repetition

Fig. 8. Set size effects during prime and test streaks in Experiment 2.

Fig. 9. Estimates of target and distractor priming effects in Experiment 2 on prime (left) and test (right) trials. Only the first trials after switch were analyzed, that is, for prime streaks the
first trials after the switch from test streaks and vice versa. Lines show 95% CI.

A. Chetverikov et al. Vision Research 140 (2017) 144–156

152



Fig. 10. RTs as a function of the distance between target orientation on test streaks and the mean of preceding prime streak distractor distribution, separately for each combination or
prime SS and test SS, in Experiment 2. The bottom row shows the data for two prime SS aggregated over test SS.

Table 2
Model fits for test streaks RT in Experiment 2.

Prime SS Test SS ΔBIC against null model Best model Model 2nd best

Linear HG Uniform UwD ΔBIC

Prime Streak: Gaussian, SD=15
16 16 0.80 −1.36 −2.81 0.27 Linear UwD 0.53

36 −1.42 −3.54 −3.70 −1.97 Null Linear 1.42
All 5.30 0.98 −0.35 4.36 Linear* UwD 0.94

36 16 21.57 15.79 18.20 17.24 Linear** Uniform 3.37
36 26.73 21.21 22.13 21.00 Linear** Uniform 4.61
All 52.88 41.81 45.13 43.14 Linear** Uniform 7.75

Prime Streak: Uniform
16 16 23.86 11.15 10.27 23.92 UwD* Linear 0.05

36 5.21 0.37 1.19 4.48 Linear* UwD 0.74
All 33.49 17.05 17.15 32.33 Linear* UwD 1.15

36 16 2.22 −3.66 2.55 3.96 UwD* Uniform 1.41
36 2.58 −1.83 −0.58 3.17 UwD* Linear 0.59
All 11.11 0.81 8.33 13.42 UwD** Linear 2.31

Note: HG – half-Gaussian, UwD – uniform with decrease. ΔBIC > 2 provide “positive” evidence, while ΔBIC > 6 provide “strong” and ΔBIC > 10 “very strong” evidence.
* Best model is better than the null model.
** Best model is better than the null and the 2nd best model.
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number differed between test and prime streaks and in the absence of
different test streaks distributions we cannot determine whether ob-
servers were able to learn the distribution shape.

The results also elucidate the role of target and distractor priming
with different set sizes. A comparison of priming effects from test and
prime streaks showed that target and distractor priming were similar in
magnitude during switches from prime to test trials while for shifts
from test to prime trials distractor priming was stronger. This could
reflect three factors: streak length, stability of target or distractors, and
search difficulty. Prime streaks were longer, more difficult, and had
stable distractor distributions while test streaks were short, easier, and
had stable targets. It is nevertheless clear that both target and dis-
tractors are learned in orientation search and affect search efficiency on
subsequent trials in contrast to the claims of Lamy et al. (2013).

We did not find any significant effect of set size on target priming.
However, distractor priming was significantly more pronounced after a
switch from test to prime trials when the test streak had larger set size
(36 lines), and distractor priming was also stronger with larger set size
within test streaks. In sum, this experiment supports the results of
Experiment 1, more often revealing larger priming effects with in-
creasing set size, in contradiction to some previous results
(Meeter & Olivers, 2006; Rangelov, Müller, et al., 2013; Rangelov,
Zehetleitner, et al., 2017). The increased distractor priming follows
increases in the of precision in distractor distribution learning and
further supports the idea that the two might reflect similar mechanisms.

10. General discussion

Observers can learn surprisingly complex distractor distributions
and quickly learn to distinguish between Gaussian and uniform dis-
tractor distributions. We infer this from inhibitory effects of role-re-
versals – if the target falls within the represented distractor distribution,
search is slowed, and by how much depends on the distribution shape
(Chetverikov et al., 2016, 2017a,b).

But our current findings also show that this learning has limits – that
a certain minimum amount of information is required on each trial for
distribution learning to occur. The smaller set sizes that we used did not
lead to any learning of the characteristics of distractor distributions
while there was strong learning of the shape of distractor distributions
for the largest set size. This clearly shows that distribution encoding
does not simply reflect sampling of only a few display items. In contrast,
observers seem to aggregate information over the whole display. This
result supports accounts of ensemble perception that do not rely on a
limited sampling mechanism (Attarha &Moore, 2015; Attarha et al.,
2014; Dakin, 2001; Im &Halberda, 2013; Tokita et al., 2016;

Utochkin & Tiurina, 2014). Moreover, this shows that studies finding
strong limits of information integration in explicit averaging judgments
(Maule & Franklin, 2016; Myczek & Simons, 2008; Solomon et al., 2016;
Tibber et al., 2015) might reflect bottlenecks related to explicit judge-
ments rather than to encoding of perceptual ensembles.

But the results also pose a question for further studies: why does
distribution encoding diminish or even disappear with smaller set sizes?
There are at least two possible reasons for this. The simplest explana-
tion is that there is not enough information about the distribution
within displays with the smaller set sizes. Another possibility is that the
smaller set sizes are simply not considered examples of a distribution by
the visual system – the displays are simply too sparse for the system to
treat them in this way.

Previously, we found that observers are able to grasp distribution
shape from one or two repetitions with 36 stimuli (Chetverikov et al.,
2017a), amounting at most to the encoding of 70 distractor lines. In
Experiment 2 with prime SS=16, observers had 75–90 examples of
distractors in prime streaks. So why does no learning take place with
small set sizes? It is unlikely to be related to area as in Experiment 1 the
two largest set sizes were positioned on the same matrix. Neither can
the density of the display explain this, as this was controlled for in
Experiment 2. The first explanation we suggested (lack of information)
would then imply that there is a heavy loss of information in-between
trials. This may occur because priming effects stop accumulating
quickly (Brascamp, Pels, & Kristjánsson, 2011; Martini, 2010). How-
ever, there is also evidence that learning of distribution shape might
occur with sequences longer than 6 trials (Chetverikov et al., 2017a,
Exp. 3).

The second explanation suggested above – that some displays are
not treated as distributions – does not imply any loss of information.
Rather the absence of distribution learning might reflect that the stimuli
are processed in small chunks (“serial” processing, though not ne-
cessarily limited to single stimuli, but perhaps to small groups).
Speculatively, if there is a limited number of stimuli on the screen,
observers may look for target using local cues (e.g., angles between
lines). With larger displays that strategy might be less useful, resulting
in more global processing. This calls for studies of attentional dis-
tribution and display segmentation in distribution learning.

Experiment 2 suggests that learning distributions may affect search
efficacy. Search for stimuli from a Gaussian prime distribution with
SS= 36 compared to SS=16 was faster, while no such difference was
observed with the uniform prime distribution. Distribution learning was
observed only with SS= 36 and the additional search time benefits for
the Gaussian distribution could be attributed to learning. But in
Experiment 1, RT differences between distributions were the same for

Fig. 11. Observers’ slopes within (β0) and outside (β1) of prime distribution range in Experiment 2. Lines show 95% CI. Slopes are obtained for log-transformed RT.
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different set sizes, except for the smallest one, suggesting a role of other
factors (display size, target eccentricity) as well.

One potential factor affecting both search times and distribution
learning, and partially dependent on set size, might be the total area of
stimuli. With increased area, larger parts of the search display might
appear in the periphery. Recently, Rosenholtz and colleagues suggested
that peripheral visual representations might lose detail while keeping a
range of statistics intact (Balas, Nakano, & Rosenholtz, 2009;
Chang & Rosenholtz, 2016; Rosenholtz et al., 2012). Such statistics in-
clude, among others, pairwise correlations of responses between or-
iented wavelets across different orientations, spatial locations, and
spatial scales. These statistics are detailed enough for approximate
encoding of orientation PDF. It is therefore possible that increasing the
total area might increase precision of distribution encoding due to,
paradoxically, less detailed peripheral perception. Note, however, that
in Experiment 1 two pairs of set sizes (8 and 14, 24 and 36) had the
same total area – the lines were positioned in a matrix of 4×4 or 6× 6
lines, respectively. Larger area therefore cannot be the only factor
providing the advantage in distribution learning: set sizes 24 and 36 in
Experiment 1 had the same total area, yet the search times were lower
and the distribution learning was more precise in the latter than the
former case. Notably, our results also show that, even if target and
distractor priming occurs, this does not necessarily mean that dis-
tribution shape is learned. While target priming was generally weaker
than distractor priming, it was nevertheless observed with the smaller
set sizes (16 lines) in Experiment 2. The magnitude of distractor
priming was also similar between set sizes. At the same time, no dis-
tribution shape learning was found for this set size. Note, however, that
the fact that distribution shape is not learned accurately does not mean
that observers do not learn some information about distributions. In
Experiment 2, with the smaller set size, RT functions on test trials were
best fit by linear and uniform-with-decrease models regardless of dis-
tribution shape. This means that observers approximated distractor
distributions similarly. In contrast, in Experiment 1 RT functions on test
trials following the two smallest set sizes (8 and 16) were best fit by null
models. But there were also no significant priming effects with these set
sizes. In sum, where there was no distribution learning at all, no
priming of pop-out effects were observed. When there was at least some
priming of pop-out, there was also some evidence of distribution
learning, although it was not necessarily particularly accurate. We be-
lieve that this indicates that priming effects and distribution shape
learning may be governed by the same learning mechanism, but the
precision of that learning varies.

Finally, the results show a complicated pattern of findings sur-
rounding the interaction of set-size with the target and distractor
priming of pop-out. In general, the results indicate stronger priming of
pop-out with larger set size. This goes against findings of some previous
studies (Rangelov, Müller, et al., 2013; Rangelov, Zehetleitner, et al.,
2017) and the idea that uncertainty plays a domineering role in priming
of pop-out (Meeter & Olivers, 2006) while supporting other studies that
found similar or larger priming with larger set sizes (Becker & Ansorge,
2013; Hodsoll et al., 2006; Kristjánsson & Driver, 2008; Wang et al.,
2005; Wolfe et al., 2003). Some previous studies may have confounded
spatial density of stimuli with set size as we did in Experiment 1. For
example, in a typical visual search display with items arranged in a
circle that was used both by Becker and Ansorge (2013) and Rangelov
et al. (2017, Exp. 3 and 4), increasing the number of items auto-
matically means decreasing their density. When the spatial density is
similar despite different set sizes (as in our Experiment 2), the priming
effects seem to depend less on set size, although they are still larger
with larger set sizes. Note, however, that in Experiment 1 we also found
positive correlations between priming effects and set size despite cov-
ariation of density with set size. Search difficulty, is, on its own, also
unlikely to explain the differences in the results. In both experiments
reported here search difficulty decreased with set size while priming
effects became stronger. Yet, with the displays used by Rangelov and

colleagues (2017), search difficulty similarly decreased with set size but
priming effects became weaker. A possible explanation is that search
difficulty lies in different boundaries – in our experiments the average
error percentage varied approximately from 75% to 95% while in the
data reported by Rangelov and colleagues (2017) the lowest accuracy
was about 88%. This might also hint at the importance of another
variable – positional variation of individual stimuli. In our experiments,
stimuli were jittered which might reduce the usefulness of local cues,
while in the studies of Rangelov and colleagues, the stimuli were ar-
ranged on a fixed grid which might entice participants to use such cues
for search. Accordingly, when they are used, specific target and dis-
tractor parameters may become less relevant. In general, the results
indicate that many questions remain unanswered in the priming of pop-
out literature despite it’s relatively long history.

In sum, we found that distribution learning should not be thought of
as being based on a limited sampling mechanism. Small set sizes and
sparse displays nevertheless hamper learning, and this provides clues
regarding the boundary conditions of distractor distribution learning.
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